Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Public Health ; 11: 1003923, 2023.
Article in English | MEDLINE | ID: covidwho-2271617

ABSTRACT

Objectives: To identify risk factors associated with symptoms of anxiety, depression, and obsessive-compulsive disorder (OCD) among children during the 1st year of the COVID-19 pandemic. Methods: A longitudinal study with three cross-sectional timepoints [April 2020 (n = 273), October 2020 (n = 180), and April 2021 (n = 116)] was conducted at a K-12 public school in Florida. Infection and sero-positivity for SARS-CoV-2 was determined by molecular and serologic approaches. Adjusted odds ratios using mixed effect logistic regression models for symptom-derived indicators of anxiety, depression, and OCD in children in April 2021 are presented; past infection and seropositivity were included in the models. Results: The prevalence of anxiety, depression, or OCD moved from 47.1, to 57.2, to 42.2% across the three timepoints during the study. By endline of the study, in April 2021, non-white children were at higher risk for depression and OCD. Risk for anxiety, depression, and OCD was associated with students who lost a family member due to COVID-19 and who were identified as at-risk in previous timepoints. Rates of SARS-CoV-2 infection and seropositivity were low and not statistically associated with assessed outcomes. Conclusions: In situations like the COVID-19 pandemic, targeted mental health interventions and screenings are needed in children and adolescents, especially among minority children.


Subject(s)
COVID-19 , Child , Adolescent , Humans , COVID-19/epidemiology , Longitudinal Studies , Pandemics , Cross-Sectional Studies , Florida/epidemiology , SARS-CoV-2
2.
Trop Med Infect Dis ; 7(8)2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-1997799

ABSTRACT

With the progression of the global SARS-CoV-2 pandemic, the new variants have become more infectious and continue spreading at a higher rate than pre-existing ones. Thus, we conducted a study to explore the epidemiology of emerging variants of SARS-CoV-2 that circulated in Bangladesh from December 2020 to September 2021, representing the 2nd and 3rd waves. We collected new cases and deaths per million daily data with the reproduction rate. We retrieved 928 SARS-CoV-2 sequences from GISAID and performed phylogenetic tree construction and mutation analysis. Case counts were lower initially at the end of 2020, during January-February and April-May 2021, whereas the death toll reached the highest value of 1.587 per million on the first week of August and then started to decline. All the variants (α, ß, δ, η) were prevalent in the capital city, Dhaka, with dispersion to large cities, such as Sylhet and Chattogram. The B.1.1.25 lineage was prevalent during December 2020, but the B.1.617.2/δ variant was later followed by the B.1.351/ß variant. The phylogeny revealed that the various strains found in Bangladesh could be from numerous countries. The intra-cluster and inter-cluster communication began in Bangladesh soon after the virus arrived. The prominent amino acid substitution was D614G from December 2020 to July 2021 (93.5 to 100%). From February-April, one of the VOC's important mutations, N501Y substitution, was also estimated at 51.8%, 76.1%, and 65.1% for the α, ß and γ variants, respectively. The γ variant's unique mutation K417T was detected only at 1.8% in February. Another frequent mutation was P681R, a salient feature of the δ variant, detected in June (88.2%) and July (100%). Furthermore, only one γ variant was detected during the entire second and third wave, whereas no η variant was observed in this period. This rapid growth in the number of variants identified across Bangladesh shows virus adaptation and a lack of strict quarantine, prompting periodic genomic surveillance to foresee the spread of new variants, if any, and to take preventive measures as soon as possible.

3.
COVID ; 2(7):916-939, 2022.
Article in English | MDPI | ID: covidwho-1917327

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread to the environment through several routes and persist for a more extended period. Therefore, we reviewed pertinent literature to understand the transmission dynamics of SARS-CoV-2 and genomic epidemiology of emerging variants of concern (VOCs) in the environment, their inactivation strategies, and the impact of COVID-19 on the ecosystem. The fallouts of the reviewed studies indicate that SARS-CoV-2 transmits through air and fomite, contaminated surfaces, biomedical wastes, and stool, which contaminates the environment through wastewater. As a result, multiple VOCs of SARS-CoV-2 were circulating in the environment. Genomic epidemiology revealed that the most prevalent VOC was Delta (B.1.617.2;44.24%), followed by Omicron (B.1.1.529;43.33%), in the environment. Phylogenetic analysis showed that environmental strains are clustered with a likeness of the human strains of the same or nearby countries, emphasizing the significance of continued environmental surveillance to track the emergence of the new variant. Thus, we should reduce viral dispersion in the environment through rapid and appropriate disinfection strategies. Moreover, the increased production and use of macro and microfiber plastic products should be brought under strict legislation with integrated waste management to control the unrelenting propagation of viral RNA. Finally, a comprehensive understanding of the environmental transmission pathways of SARS-CoV-2 is crucial for forecasting outbreak severity in the community, allowing us to prepare with the correct tools to control any impending pandemic. We recommend wastewater-based SARS-CoV-2 surveillance and air particulates to track the emerging VOCs of SARS-CoV-2 spread in the environment.

4.
PLoS One ; 16(12): e0260635, 2021.
Article in English | MEDLINE | ID: covidwho-1581779

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) showed susceptibility to diverse animal species. We conducted this study to understand the spatial epidemiology, genetic diversity, and statistically significant genetic similarity along with per-gene recombination events of SARS-CoV-2 and related viruses (SC2r-CoVs) in animals globally. We collected a number of different animal species infected with SARS-CoV-2 and its related viruses. Then, we retrieved genome sequences of SARS-CoV-2 and SC2r-CoVs from GISAID and NCBI GenBank for genomic and mutational analysis. Although the evolutionary origin of SARS-CoV-2 remains elusive, the diverse SC2r-CoV have been detected in multiple Rhinolophus bat species and in Malayan pangolin. To date, human-to-animal spillover events have been reported in cat, dog, tiger, lion, gorilla, leopard, ferret, puma, cougar, otter, and mink in 25 countries. Phylogeny and genetic recombination events of SC2r-CoVs showed higher similarity to the bat coronavirus RaTG13 and BANAL-103 for most of the genes and to some Malayan pangolin coronavirus (CoV) strains for the N protein from bats and pangolin showed close resemblance to SARS-CoV-2. The clustering of animal and human strains from the same geographical area has proved human-to-animal transmission of the virus. The Alpha, Delta and Mu-variant of SARS-CoV-2 was detected in dog, gorilla, lion, tiger, otter, and cat in the USA, India, Czech Republic, Belgium, and France with momentous genetic similarity with human SARS-CoV-2 sequences. The mink variant mutation (spike_Y453F) was detected in both humans and domestic cats. Moreover, the dog was affected mostly by clade O (66.7%), whereas cat and American mink were affected by clade GR (31.6 and 49.7%, respectively). The α-variant was detected as 2.6% in cat, 4.8% in dog, 14.3% in tiger, 66.7% in gorilla, and 77.3% in lion. The highest mutations observed in mink where the substitution of D614G in spike (95.2%) and P323L in NSP12 (95.2%) protein. In dog, cat, gorilla, lion, and tiger, Y505H and Y453F were the common mutations followed by Y145del, Y144del, and V70I in S protein. We recommend vaccine provision for pet and zoo animals to reduce the chance of transmission in animals. Besides, continuous epidemiological and genomic surveillance of coronaviruses in animal host is crucial to find out the immediate ancestor of SARS-CoV-2 and to prevent future CoVs threats to humans.


Subject(s)
SARS-CoV-2 , COVID-19 , Genetic Variation , Phylogeny
5.
Transbound Emerg Dis ; 68(6): 3643-3657, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526427

ABSTRACT

The coronavirus disease 2019 (COVID-19) is an emerging and rapidly evolving profound pandemic, which causes severe acute respiratory syndrome and results in significant case fatality around the world including Bangladesh. We conducted this study to assess how COVID-19 cases clustered across districts in Bangladesh and whether the pattern and duration of clusters changed following the country's containment strategy using Geographic information system (GIS) software. We calculated the epidemiological measures including incidence, case fatality rate (CFR) and spatiotemporal pattern of COVID-19. We used inverse distance weighting (IDW), Geographically weighted regression (GWR), Moran's I and Getis-Ord Gi* statistics for prediction, spatial autocorrelation and hotspot identification. We used retrospective space-time scan statistic to analyse clusters of COVID-19 cases. COVID-19 has a CFR of 1.4%. Over 50% of cases were reported among young adults (21-40 years age). The incidence varies from 0.03 - 0.95 at the end of March to 15.59-308.62 per 100,000, at the end of July. Global Moran's Index indicates a robust spatial autocorrelation of COVID-19 cases. Local Moran's I analysis stated a distinct High-High (HH) clustering of COVID-19 cases among Dhaka, Gazipur and Narayanganj districts. Twelve statistically significant high rated clusters were identified by space-time scan statistics using a discrete Poisson model. IDW predicted the cases at the undetermined area, and GWR showed a strong relationship between population density and case frequency, which was further established with Moran's I (0.734; p ≤ 0.01). Dhaka and its surrounding six districts were identified as the significant hotspot whereas Chattogram was an extended infected area, indicating the gradual spread of the virus to peripheral districts. This study provides novel insights into the geostatistical analysis of COVID-19 clusters and hotspots that might assist the policy planner to predict the spatiotemporal transmission dynamics and formulate imperative control strategies of SARS-CoV-2 in Bangladesh. The geospatial modeling tools can be used to prevent and control future epidemics and pandemics.


Subject(s)
COVID-19 , Animals , Bangladesh/epidemiology , COVID-19/veterinary , Pandemics , Retrospective Studies , SARS-CoV-2 , Spatial Analysis
6.
Transbound Emerg Dis ; 69(5): 2523-2543, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1480225

ABSTRACT

The exact origin of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and source of introduction into humans has not been established yet, though it might be originated from animals. Therefore, we conducted a study to understand the putative reservoirs, transmission dynamics, and susceptibility patterns of SARS-CoV-2 in animals. Rhinolophus bats are presumed to be natural progenitors of SARS-CoV-2-related viruses. Initially, pangolin was thought to be the source of spillover to humans, but they might be infected by human or other animal species. So, the virus spillover pathways to humans remain unknown. Human-to-animal transmission has been testified in pet, farmed, zoo and free-ranging wild animals. Infected animals can transmit the virus to other animals in natural settings like mink-to-mink and mink-to-cat transmission. Animal-to-human transmission is not a persistent pathway, while mink-to-human transmission continues to be illuminated. Multiple companions and captive wild animals were infected by an emerging alpha variant of concern (B.1.1.7 lineage) whereas Asiatic lions were infected by delta variant, (B.1.617.2). To date, multiple animal species - cat, ferrets, non-human primates, hamsters and bats - showed high susceptibility to SARS-CoV-2 in the experimental condition, while swine, poultry, cattle showed no susceptibility. The founding of SARS-CoV-2 in wild animal reservoirs can confront the control of the virus in humans and might carry a risk to the welfare and conservation of wildlife as well. We suggest vaccinating pets and captive animals to stop spillovers and spillback events. We recommend sustainable One Health surveillance at the animal-human-environmental interface to detect and prevent future epidemics and pandemics by Disease X.


Subject(s)
COVID-19 , Cattle Diseases , Chiroptera , One Health , Swine Diseases , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/veterinary , Cattle , Ferrets , Humans , Mink , Pandemics/prevention & control , Pandemics/veterinary , Public Health , SARS-CoV-2 , Swine
7.
Environ Sci Pollut Res Int ; 28(44): 61951-61968, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1437315

ABSTRACT

The novel coronavirus disease of 2019 (COVID-19) pandemic has caused an exceptional drift of production, utilization, and disposal of personal protective equipment (PPE) and different microplastic objects for safety against the virus. Hence, we reviewed related literature on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detected from household, biomedical waste, and sewage to identify possible health risks and status of existing laws, regulations, and policies regarding waste disposal in South Asian (SA) countries. The SARS-CoV-2 RNA was detected in sewage and wastewater samples of Nepal, India, Pakistan, and Bangladesh. Besides, this review reiterates the enormous amounts of PPE and other single-use plastic wastes generated from healthcare facilities and households in the SA region with inappropriate disposal, landfilling, and/or incineration techniques wind-up polluting the environment. Consequently, the Delta variant (B.1.617.2) of SARS-CoV-2 has been detected in sewer treatment plant in India. Moreover, the overuse of non-biodegradable plastics during the pandemic is deteriorating plastic pollution condition and causes a substantial health risk to the terrestrial and aquatic ecosystems. We recommend making necessary adjustments, adopting measures and strategies, and enforcement of the existing biomedical waste management and sanitation-related policy in SA countries. We propose to adopt the knowledge gaps to improve COVID-19-associated waste management and legislation to prevent further environmental pollution. Besides, the citizens should follow proper disposal procedures of COVID-19 waste to control the environmental pollution.


Subject(s)
COVID-19 , Waste Management , Ecosystem , Humans , Pakistan , Plastics , RNA, Viral , SARS-CoV-2
8.
Viruses ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: covidwho-1438741

ABSTRACT

Diverse coronavirus (CoV) strains can infect both humans and animals and produce various diseases. CoVs have caused three epidemics and pandemics in the last two decades, and caused a severe impact on public health and the global economy. Therefore, it is of utmost importance to understand the emergence and evolution of endemic and emerging CoV diversity in humans and animals. For diverse bird species, the Infectious Bronchitis Virus is a significant one, whereas feline enteric and canine coronavirus, recombined to produce feline infectious peritonitis virus, infects wild cats. Bovine and canine CoVs have ancestral relationships, while porcine CoVs, especially SADS-CoV, can cross species barriers. Bats are considered as the natural host of diverse strains of alpha and beta coronaviruses. Though MERS-CoV is significant for both camels and humans, humans are nonetheless affected more severely. MERS-CoV cases have been reported mainly in the Arabic peninsula since 2012. To date, seven CoV strains have infected humans, all descended from animals. The severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) are presumed to be originated in Rhinolopoid bats that severely infect humans with spillover to multiple domestic and wild animals. Emerging alpha and delta variants of SARS-CoV-2 were detected in pets and wild animals. Still, the intermediate hosts and all susceptible animal species remain unknown. SARS-CoV-2 might not be the last CoV to cross the species barrier. Hence, we recommend developing a universal CoV vaccine for humans so that any future outbreak can be prevented effectively. Furthermore, a One Health approach coronavirus surveillance should be implemented at human-animal interfaces to detect novel coronaviruses before emerging to humans and to prevent future epidemics and pandemics.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Epidemics/prevention & control , Animals , Animals, Domestic/virology , Animals, Wild/virology , Coronaviridae/metabolism , Coronaviridae/pathogenicity , Genome, Viral/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics/prevention & control , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission
9.
Microorganisms ; 9(8)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1348673

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swamped the global environment greatly in the current pandemic. Wastewater-based epidemiology (WBE) effectively forecasts the surge of COVID-19 cases in humans in a particular region. To understand the genomic characteristics/footprints and diversity of SARS-CoV-2 in the environment, we analyzed 807 SARS-CoV-2 sequences from 20 countries deposited in GISAID till 22 May 2021. The highest number of sequences (n = 638) were reported in Austria, followed by the Netherlands, China, and Bangladesh. Wastewater samples were highest (40.0%) to successfully yield the virus genome followed by a 24 h composite wastewater sample (32.6%) and sewage (18.5%). Phylogenetic analysis revealed that SARS-CoV-2 environmental strains are a close congener with the strains mostly circulating in the human population from the same region. Clade GRY (32.7%), G (29.2%), GR (25.3%), O (7.2%), GH (3.4%), GV (1.4%), S (0.5%), and L (0.4%) were found in environmental samples. Various lineages were identified in environmental samples; nevertheless, the highest percentages (49.4%) of the alpha variant (B.1.1.7) were detected in Austria, Liechtenstein, Slovenia, Czech Republic, Switzerland, Germany, and Italy. Other prevalent lineages were B.1 (18.2%), B.1.1 (9.2%), and B.1.160 (3.9%). Furthermore, a significant number of amino acid substitutions were found in environmental strains where the D614G was found in 83.8% of the sequences. However, the key mutations-N501Y (44.6%), S982A (44.4%), A570D (43.3%), T716I (40.4%), and P681H (40.1%) were also recorded in spike protein. The identification of the environmental belvedere of SARS-CoV-2 and its genetic signature is crucial to detect outbreaks, forecast pandemic harshness, and prepare with the appropriate tools to control any impending pandemic. We recommend genomic environmental surveillance to trace the emerging variants and diversity of SARS-CoV-2 viruses circulating in the community. Additionally, proper disposal and treatment of wastewater, sewage, and medical wastes are important to prevent environmental contamination.

10.
Infect Genet Evol ; 92: 104884, 2021 08.
Article in English | MEDLINE | ID: covidwho-1208478

ABSTRACT

Epidemiological and molecular characterization of SARS-CoV-2 is essential for identifying the source of the virus and for effective control of the spread of local strains. We estimated case fatality rate, cumulative recovery number, basic reproduction number (R0) and future incidence of COVID-19 in Bangladesh. We illustrated the spatial distribution of cases throughout the country. We performed phylogenetic and mutation analysis of SARS-CoV-2 sequences from Bangladesh. As of July 31, 2020, Bangladesh had a case fatality rate of 1.32%. The cases were initially clustered in Dhaka and its surrounding districts in March but spreads throughout the country over time. The R0 calculated as 1.173 in Exponential Growth method. For the projection, a 20% change in R0 with subsequent infection trend has been calculated. The genomic analysis of 292 Bangladeshi SARS-CoV-2 strains suggests diverse genomic clades L, O, S, G, GH, where predominant circulating clade was GR (83.9%; 245/292). The GR clades' phylogenetic analysis revealed distinct clusters (I to XIII) with intra-clade variations. The mutation analysis revealed 1634 mutations where 94.6% and 5.4% were non-synonymous and unique mutation, respectively. The Spike, Nucleocapsid, NSP2, and RdRP showed substantially high mutation but no mutation was recorded in NSP9 and NSP11 protein. In spike (S) protein, 355 predominant mutations were recorded, highest in D614G. Alternatively, I120F in NSP2 protein, R203K and G204R in nucleocapsid protein, and P323L in RdRp were more recurrent. The Bangladeshi genomes belonged to phylogenetic lineages A, B, B.1, B.1.1, B.1.1.23, B.1.1.25, B.1.113, and B.1.36, among which 50.0% sequences owned by the pangolin lineage B.1.1.25. The study illustrates the spatial distribution of SARS-CoV-2, and molecular epidemiology of Bangladeshi isolates. We recommend continuous monitoring of R0 and genomic surveillance to understand the transmission dynamics and detect new variants of SARS-CoV-2 for proper control of the current pandemic and evaluate the effectiveness of vaccination globally.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genetic Variation , Phylogeny , SARS-CoV-2/genetics , Adolescent , Adult , Bangladesh/epidemiology , COVID-19/mortality , Child , Child, Preschool , Computer Simulation , Female , Humans , Infant , Male , Middle Aged , Models, Biological , Young Adult
11.
Biosaf Health ; 3(1): 39-49, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-785248

ABSTRACT

South Asian (SA) countries have been fighting with the pandemic novel coronavirus disease 2019 (COVID-19) since January 2020. Earlier, the country-specific descriptive study has been done. Nevertheless, as transboundary infection, the border sharing, shared cultural and behavioral practice, effects on the temporal and spatial distribution of COVID-19 in SA is still unveiled. Therefore, this study has been revealed the spatial hotspot along with descriptive output on different parameters of COVID-19 infection. We extracted data from the WHO and the worldometer database from the onset of the outbreak up to 15 May, 2020. Europe has the highest case fatality rate (CFR, 9.22%), whereas Oceania has the highest (91.15%) recovery rate from COVID-19. Among SA countries, India has the highest number of cases (85,790), followed by Pakistan (38,799) and Bangladesh (20,065). However, the number of tests conducted was minimum in this region in comparison with other areas. The highest CFR was recorded in India (3.21%) among SA countries, whereas Nepal and Bhutan had no death record due to COVID-19 so far. The recovery rate varies from 4.75% in the Maldives to 51.02% in Sri Lanka. In Bangladesh, community transmission has been recorded, and the highest number of cases were detected in Dhaka, followed by Narayanganj and Chattogram. We detected Dhaka and its surrounding six districts, namely Gazipur, Narsingdi, Narayanganj, Munshiganj, Manikganj, and Shariatpur, as the 99% confidence-based hotspot where Faridpur and Madaripur district as the 95% confidence-based spatial hotspots of COVID-19 in Bangladesh. However, we did not find any cold spots in Bangladesh. We identified three hotspots and three cold spots at different confidence levels in India. Findings from this study suggested the "Test, Trace, and Isolation" approach for earlier detection of infection to prevent further community transmission of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL